博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
统计信号处理-简单看看克拉美罗界
阅读量:6289 次
发布时间:2019-06-22

本文共 2327 字,大约阅读时间需要 7 分钟。

  各种研究领域(包括无线定位方向)都会碰到参数估计的问题,这时常常会看到克拉美罗界 (Cramér–Rao bound)  这个东西。很多随机信号的书都会介绍什么是克拉美罗界,但初学者学起来往往很吃力,本文从直观上简单讨论一下克拉美罗界的各个方面。

什么是参数估计问题

  假设一种最简单的情况:

    一个物理量为,我们使用某种方式去观测它,观测值为,由于存在噪声,此时为高斯噪声,

这种情况下,我们自然会直接使用观测值去估计,这时就会存在估计的误差,直观地理解,噪声的方差越大,估计就可能越不准确。

为什么要讨论克拉美罗界

  讨论克拉美罗界就是为了使用这个标准来衡量无偏估计量的性能。

  采用上面的方式,使用去估计,这个估计值会在真实值附近波动(看作随机变量)。我们需要使用一些标准来衡量这种估计的好坏,一个标准是估计值的平均,这里的这个估计量是无偏估计量。另一标准是这个估计值波动的剧烈程度,也就是方差。上面这个问题中,克拉美罗界就等于这个方差。

  可是为什么不直接讨论方差而要去计算克拉美罗界呢,因为方差是针对某一种特定的估计量(或者理解为估计方式)而言的,在上面的例子中,方差是估计量的方差()。对于稍微复杂一点点的问题,对的可以有各种不同的估计量,它们分别的方差是不同的。显然,对于无偏估计量而言,方差越小的估计方式性能越好,但是这个方差有一个下界,就是我们的克拉美罗界。

直观地理解克拉美罗界

  克拉美罗界本身不关心具体的估计方式,只是去反映:利用已有信息所能估计参数的最好效果。

  还是上面那个参数估计问题,当我们观察到的时候,我们可以知道真实值的概率密度分布是以为均值,为方差的正态分布,即:

                  

上图给出了两个似然函数的例子,直观地看,似然函数的“尖锐”性决定了我们估计位置参数的精度。这个“尖锐”性可以用对数似然函数峰值处的负的二阶导数来度量,即对数似然函数的曲率(对数似然函数就是在似然函数的基础山加一个自然对数,这样有利于计算)。计算过程我就不写了,有兴趣的可以自己算算,算完之后结果为:,这里正好是噪声的方差的倒数,也就是噪声越小,对数似然函数越尖锐。

  所以,可以这样理解,似然函数的“尖锐”程度的倒数(即对数似然函数的二阶导的倒数),就是克拉美罗界。

不同的估计量(估计方式)是什么意思

  让我们来分析一个稍微复杂一点点的参数估计问题:

    一个物理量为,我们使用某种方式去观测它,观测值为,这是两个不同时刻的观测结果,一样的高斯噪声

  这种情况下,我们要估计,正常人可能会采用估计量,即前后两个观测的平均,也有人可能觉得这样计算量有点大,于是总是直接使用去估计,也有人觉得第二个观测值可能会受到系统影响而不准确,他更相信前面的观察值,于是总采取这样的估计量。这三个估计量都是无偏的:

  估计量的方差为:

  估计量的方差为:

  估计量的方差为:

  比较上面的三种估计量,第一种的方差最小,它的估计效果较好。实际上,如果第二个观测值真的不太准确,也就是后一个高斯噪声较大,这样的话也许第二个估计量就比较合适了。

  因此,不同的考虑方式可以产生各种不同的估计算法,这些不同的估计量都是在真实值附近波动的随机变量(有的有偏,有的无偏),它们分别的方差也是不一样的,但是数学家们证明了:任何无偏估计量的方差必定大于等于克拉美罗界。

 克拉美罗界的基本计算

  我们假设这两次观察互相独立,仅受相同的高斯白噪声影响,那么根据已有的信息,真实值的似然函数为两个正态的概率密度分布相乘:(注意:pdf实际上应该再进行归一化处理,但是我们之后使用对数似然函数,乘不乘归一化系数都无所谓,对数之后变成了常数,求导的时候就没了)

与之前一样,可以计算出对数似然函数的二阶导数,得到结果为:。实际上,当观测数目为的时候,这个值将会是。也就是说,使用多个观测值的信息时,对数似然函数越“尖锐”。这个二阶导数(曲率)更一般的度量是(下面用来表示要估计的参数):

它度量了对数似然函数的平均曲率(很多情况下曲率与的值有关,取数学期望使得它仅为的函数),被称为数据的Fisher信息,直观地理解,信息越多,下限越低,它具有信息测度的基本性质(非负的、独立观测的可加性)。一般来说,Fisher信息的倒数就是克拉美罗界了,任何无偏估计量的方差满足:

大多情况下,这个不等式的右边(克拉美罗界)是的函数。

克拉美罗界的标准定义

   (定理:Cramer-Rao下限----标量参数)

  假定PDF 满足“正则”条件(对于所有的):

其中数学期望是对 求取的。那么,任何无偏估计量的方差必定满足:

其中导数是在的真值处计算的,数学期望是对求取的。而且,对于某个函数,当且仅当

时,对所有达到下限的无偏估计量就可以求得。这个估计量是,它是MVU估计量(最小方差无偏估计),最小方差是

总结

  估计一个参数,根据已有信息得到了似然函数(或者pdf),这个pdf的“尖锐”程度的倒数(即对数似然函数的二阶导的倒数)就是克拉美罗界。克拉美罗界的计算不依赖具体的估计方式,它可以用来作为一个衡量估计方式好坏的标准,即估计量的方差越靠近克拉美罗界,效果越好。

 

(注:本文主要参考《统计信号处理基础-估计与检测理论》-国外电子与通信教材系列)

 

 

作者:

出处: 
关于作者:目前主要研究领域为机器学习与无线定位技术,欢迎讨论与指正!
版权声明:本文版权归作者和博客园共有,转载请注明出处。

 

转载于:https://www.cnblogs.com/rubbninja/p/4512765.html

你可能感兴趣的文章
【转载】每个程序员都应该学习使用Python或Ruby
查看>>
PHP高级编程之守护进程,实现优雅重启
查看>>
PHP字符编码转换类3
查看>>
rsync同步服务配置手记
查看>>
http缓存知识
查看>>
Go 时间交并集小工具
查看>>
iOS 多线程总结
查看>>
webpack是如何实现前端模块化的
查看>>
TCP的三次握手四次挥手
查看>>
关于redis的几件小事(六)redis的持久化
查看>>
webpack4+babel7+eslint+editorconfig+react-hot-loader 搭建react开发环境
查看>>
Maven 插件
查看>>
初探Angular6.x---进入用户编辑模块
查看>>
计算机基础知识复习
查看>>
【前端词典】实现 Canvas 下雪背景引发的性能思考
查看>>
大佬是怎么思考设计MySQL优化方案的?
查看>>
<三体> 给岁月以文明, 给时光以生命
查看>>
Android开发 - 掌握ConstraintLayout(九)分组(Group)
查看>>
springboot+logback日志异步数据库
查看>>
Typescript教程之函数
查看>>